“数字+”与之江统计讲坛(第43讲)3月27日上海第二工业大学姜荣教授来中心讲座预告

发表时间:2024-03-25

讲座题目:Unconditional Quantile Regression for Streaming Datasets

主讲人: 姜荣

讲座时间:2024年3月27日(周三)  16:00-17:00

讲座地点:综合楼644会议室


主讲人简介:

姜荣,博士,上海第二工业大学数理与统计学院教授,全国工业统计学教学研究会金融科技与大数据技术分会理事。在《Journal of Business & Economic Statistics》、《Journal of Financial Econometrics》、《Test》、《Neurocomputing》和《Journal of Multivariate Analysis》等国际期刊上发表SCI和SSCI论文30余篇。主持国家自然科学基金2项以及教育部人文社科基金和上海市扬帆计划等项目。


讲座摘要:

In this talk, we are concerned with Unconditional Quantile Regression (UQR) method, which has gained significant traction as a popular approach for modeling and analyzing data. However, much like Conditional Quantile Regression (CQR), UQR encounters computational challenges when it comes to obtaining parameter estimates for streaming datasets. This is attributed to the involvement of unknown parameters in the logistic regression loss function used in UQR, which presents obstacles in both computational execution and theoretical development. To address this, we present a novel approach involving smoothing logistic regression estimation. Subsequently, we propose a renewable estimator tailored for UQR with streaming data, relying exclusively on current data and summary statistics derived from historical data. Theoretically, our proposed estimators exhibit equivalent asymptotic properties to the standard version computed directly on the entire dataset, without any additional constraints. Both simulations and real data analysis are conducted to illustrate the finite sample performance of the proposed methods.